Ali R Tajbakhsh

Learn More
A range of monodomain nematic liquid-crystal elastomers containing differing proportions of photoisomerizable mesogenic moieties, which turn from a rodlike to a kinked shape upon ultraviolet (uv) irradiation, was studied. Depending on the proportion and positional role of the photosensitive groups in the crosslinked polymer network, different types and(More)
Samples of polymeric materials generally have no intrinsic shape; rather their macroscopic form is determined by external forces such as surface tension and memory of shear (for example, during extrusion, moulding or embossing). Hence, in the molten state, the thermodynamically most stable form for polymer (nano)particles is spherical. Here, we present the(More)
The macroscopic shape of liquid-crystalline elastomers strongly depends on the order parameter of the mesogenic groups. This order can be manipulated if photo-isomerisable groups, e.g. containing N=N bonds, are introduced into the material. We have explored the large photo-mechanical response of such an azobenzene-containing nematic elastomer at different(More)
We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the(More)
Imprinting of cholesteric textures in a polymer network is a method of preserving a macroscopically chiral phase in a system with no molecular chirality. By modifying the elastic properties of the network, the resulting stored helical twist can be manipulated within a wide range since the imprinting efficiency depends on the balance between the elastic(More)
We demonstrate, for the first time, the large electromechanical response in nematic liquid crystalline elastomers filled with a very low (∼ 0.01%) concentration of carbon nanotubes, aligned along the nematic director at preparation. The nanotubes create a very large effective dielectric anisotropy of the composite. Their local field-induced torque is(More)
The confinement of LCE materials into surface monodomains via micropatterning leads to the formation of reversible, shape-shifting surface patterns. The individual features are liquid crystalline monodomains, and by switching to an isotropic state using light or heat, the features switch between imprinted circular features and anisotropic liquid crystalline(More)
We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As(More)
Molecular chirality, and the chiral symmetry breaking of resulting macroscopic phases, can be topologically imprinted and manipulated by cross-linking and swelling of polymer networks. We present a new experimental approach to stereo-specific separation of chiral isomers by using a cholesteric elastomer in which a helical director distribution has been(More)
We study three monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups but with different types of crosslinking: (i) short flexible siloxane linkage affine to the network backbone, (ii) short flexible aliphatic crosslinks miscible with mesogenic side chain groups, and (iii) long segments of(More)