Learn More
With the increasing popularity of continuous integration, algorithms for selecting the minimal test-suite to cover a given set of changes are in order. This paper reports on how polymorphism can handle false negatives in a previous algorithm which uses method-level changes in the base-code to deduce which tests need to be rerun. We compare the approach with(More)
Refactoring is an activity that improves the internal structure of the code without altering its external behavior. When performed on the production code, the tests can be used to verify that the external behavior of the production code is preserved. However, when the refactoring is performed on test code, there is no safety net that assures that the(More)
Mutation testing is a standard technique to evaluate the quality of a test suite. Due to its computationally intensive nature, many approaches have been proposed to make this technique feasible in real case scenarios. Among these approaches, uniform random mutant selection has been demonstrated to be simple and promising. However, works on this area analyze(More)
The test suite is essential for fault detection during software development. First-order mutation coverage is an accurate metric to quantify the quality of the test suite. However, it is computationally expensive. Hence, the adoption of this metric is limited. In this study, we address this issue by proposing a realistic model able to estimate first-order(More)
  • 1