Ali ParandehGheibi

Learn More
We take an analytical approach to study fundamental rate-delay-reliability trade-offs in the context of media streaming. We consider the probability of interruption in media playback (buffer underflow) as well as the number of initially buffered packets (initial waiting time) as the Quality of user Experience (QoE) metrics. We characterize the optimal(More)
We provide a model to investigate the tension between information aggregation and spread of misinformation in large societies (conceptualized as networks of agents communicating with each other). Each individual holds a belief represented by a scalar. Individuals meet pairwise and exchange information, which is modeled as both individuals adopting the(More)
We introduce CTCP, a reliable transport protocol using network coding. CTCP is designed to incorporate TCP features such as congestion control and reliability while improving on TCP’s performance in lossy and/or dynamic networks. CTCP builds upon the ideas of TCP/NC introduced by Sundararajan et al. and uses network coding to provide robustness against(More)
Current medium access control mechanisms are based on collision avoidance and collided packets are discarded. The recent work on ZigZag decoding departs from this approach by recovering the original packets from multiple collisions. In this paper, we present an algebraic representation of collisions which allows us to view each collision as a linear(More)
Most medium access control (MAC) mechanisms discard collided packets and consider interference harmful. Recent work on Analog Network Coding (ANC) suggests a different approach, in which multiple interfering transmissions are strategically scheduled. Receiving nodes collect the results of collisions and then use a decoding process, such as ZigZag decoding,(More)
We take an analytical approach to study Quality of user Experience (QoE) for media streaming applications. We use the fact that random linear network coding applied to blocks of video frames can significantly simplify the packet requests at the network layer and avoid duplicate packet reception. We model the receiver's buffer as a queue with Poisson(More)
We focus on a particular form of network coding, reverse carpooling, in a wireless network where the potentially coded transmitted messages are to be decoded immediately upon reception. The network is fixed and known, and the system performance is measured in terms of the number of wireless broadcasts required to meet multiple unicast demands. Motivated by(More)
We consider the problem of rate allocation in a fading Gaussian multiple-access channel with fixed transmission powers. The goal is to maximize a general concave utility function of the expected achieved rates of the users. There are different approaches to this problem in the literature. From an information theoretic point of view, rates are allocated only(More)
We study the design of media streaming applications in the presence of multiple heterogeneous wireless access methods with different throughputs and costs. Our objective is to analytically characterize the trade-off between the usage cost and the Quality of user Experience (QoE), which is represented by the probability of interruption in media playback and(More)