Learn More
High-throughput mRNA sequencing (RNA-Seq) promises simultaneous transcript discovery and abundance estimation. However, this would require algorithms that are not restricted by prior gene annotations and that account for alternative transcription and splicing. Here we introduce such algorithms in an open-source software program called Cufflinks. To test(More)
We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped(More)
In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census(More)
Genome-wide measurements of protein-DNA interactions and transcriptomes are increasingly done by deep DNA sequencing methods (ChIP-seq and RNA-seq). The power and richness of these counting-based measurements comes at the cost of routinely handling tens to hundreds of millions of reads. Whereas early adopters necessarily developed their own custom computer(More)
Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and(More)
High-throughput mRNA sequencing (RNA-Seq) holds the promise of simultaneous transcript discovery and abundance estimation 1-3. We introduce an algorithm for transcript assembly coupled with a statistical model for RNA-Seq experiments that produces estimates of abundances. Our algorithms are implemented in an open source software program called Cufflinks. To(More)
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped(More)
  • Jingli A. Zhang, Ali Mortazavi, Brian A. Williams, Barbara J. Wold, Ellen V. Rothenberg
  • 2012
T cell development comprises a stepwise process of commitment from a multipotent precursor. To define molecular mechanisms controlling this progression, we probed five stages spanning the commitment process using RNA-seq and ChIP-seq to track genome-wide shifts in transcription, cohorts of active transcription factor genes, histone modifications at diverse(More)
This article presents the Mobile Century field experiment, performed on February 8, 2008, to demonstrate the feasibility of a prototype location-based service: real-time traffic estimation using GPS data from cellular phones only. Mobile Century consisted of 100 vehicles carrying a GPS-equipped Nokia N95 cell phone driving loops on a 10-mile stretch of(More)