Ali Khaki-Sedigh

Learn More
This paper presents the adaptive control of chaotic systems, which are nonlinear in parameters (NLP). A method based on Lagrangian of an objective functional is used to identify the parameters of the system. Also this method is improved to result in better rate of convergence of the estimated parameters. Estimation results are used to calculate the Lyapunov(More)
Bioprocesses are involved in producing different pharmaceutical products. Complicated dynamics, nonlinearity and non-stationarity make controlling them a very delicate task. The main control goal is to get a pure product with a high concentration, which commonly is achieved by regulating temperature or pH at certain levels. This paper discusses model(More)
Bounded rationally idea, rather that optimization idea, have result and better performance in decision making theory. Bounded rationality is the idea in decision making, rationality of individuals is limited by the information they have, the cognitive limitations of their minds, and the finite amount of time they have to make decisions. The emotional theory(More)
A novel approach to the design of decentralized controllers for large-scale systems by dynamic/static output/state feedback is presented. A new formulation of the interaction which introduces some degrees of freedom into the design procedure is offered. Sufficient conditions for exponential stability with desirable rate of decay and maximal robustness to(More)
This paper considers the adaptive computation of Lyapunov Exponents (LEs) from time series observations based on the Jacobian approach. It is shown that the LEs can be calculated adaptively in the face of parameter variations of the dynamical system. This is achieved by formulating the regression vector properly and adaptively updating the parameter vector(More)