Ali Jadbabaie

Learn More
In a recent Physical Review Letters article, Vicsek et. al. propose a simple but compelling discrete-time model of n autonomous agents {i.e., points or particles} all moving in the plane with the same speed but with different headings. Each agent’s heading is updated using a local rule based on the average of its own heading plus the headings of its(More)
This is the second of a two-part paper, investigating the stability properties of a system of multiple mobile agents with double integrator dynamics. In this second part, we allow the topology of the control interconnections between the agents in the group to vary with time. Specifically, the control law of an agent depends on the state of a set of agents(More)
This note analyzes the stability properties of a group of mobile agents that align their velocity vectors, and stabilize their inter-agent distances, using decentralized, nearest-neighbor interaction rules, exchanging information over networks that change arbitrarily (no dwell time between consecutive switches). These changes introduce discontinuities in(More)
With the advent of faster and cheaper computers, optimization based control methodologies have become a viable candidate for control of nonlinear systems. Over the past twenty years, a group of such control schemes have been successfully used in the process control industry where the processes are either intrinsically stable or have very large time(More)
This is the first of a two-part paper that investigates the stability properties of a system of multiple mobile agents with double integrator dynamics. In this first part we generate stable flocking motion for the group using a coordination control scheme which gives rise to smooth control laws for the agents. These control laws are a combination of(More)
We consider the consensus problem for stochastic discrete-time linear dynamical systems. The underlying graph of such systems at a given time instance is derived from a random graph process, independent of other time instances. For such a framework, we present a necessary and sufficient condition for almost sure asymptotic consensus using simple ergodicity(More)
We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for all-to-all networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using tools from spectral graph theory and control theory, we(More)
We develop a dynamic model of opinion formation in social networks when the information required for learning a payoff-relevant parameter may not be at the disposal of any single agent. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully(More)
This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of(More)
This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from(More)