Learn More
We present a new technology for enhancing touch interfaces with tactile feedback. The proposed technology is based on the electrovibration principle, does not use any moving parts and provides a wide range of tactile feedback sensations to fingers moving across a touch surface. When combined with an interactive display and touch input, it enables the design(More)
AIREAL is a novel haptic technology that delivers effective and expressive tactile sensations in free air, without requiring the user to wear a physical device. Combined with interactive computers graphics, AIREAL enables users to feel virtual 3D objects, experience free air textures and receive haptic feedback on gestures performed in free space. AIREAL(More)
Despite a long history of use in communication, haptic feedback is a relatively new addition to the toolbox of special effects. Unlike artists who use sound or vision, haptic designers cannot simply access libraries of effects that map cleanly to media content, and they lack even guiding principles for creating such effects. In this article, we make(More)
Frequency and amplitude discrimination thresholds along the kinesthetic to cutaneous continuum were evaluated on the left index fingerpad using a multifinger tactual display. Target stimuli were presented either in isolation (no-masker condition) or in the presence of masking stimuli (one- or two-masker conditions). Six reference target signals in the(More)
Chairs, wearables, and handhelds have become popular sites for spatial tactile display. Visual animators, already expert in using time and space to portray motion, could readily transfer their skills to produce rich haptic sensations if given the right tools. We introduce the <i>tactile animation object</i>, a directly manipulated phantom tactile sensation.(More)
TeslaTouch is a technology that provides tactile sensation to moving fingers on touch screens. Based on TeslaTouch, we have developed applications for the visually impaired to interpret and create 2D tactile information. In this paper, we demonstrate these applications, present observations from the interaction, and discuss TeslaTouch's potential in(More)
This paper introduces and validates quantitative performance measures for a rhythmic target-hitting task. These performance measures are derived from a detailed analysis of human performance during a month-long training experiment where participants learned to operate a 2-DOF haptic interface in a virtual environment to execute a manual control task. The(More)
In this paper, we present three experiments to measure the control parameter space of apparent haptic motion using variety of stimulation attributes and body sites. In Exp. 1 we measured the range of Stimulus Onset Asynchrony (SOA) that created continuous motion between two vibrating points on the dorsal forearm and on the back by varying the frequency,(More)