Learn More
Direct estimation of cardiac ventricular volumes has become increasingly popular and important in cardiac function analysis due to its effectiveness and efficiency by avoiding an intermediate segmentation step. However, existing methods rely on either intensive user inputs or problematic assumptions. To realize the full capacities of direct estimation, this(More)
Accurate estimation of the ventricular volumes is essential to the assessment of global cardiac functions. The existing estimation methods are mostly restricted to the left ventricle (LV), and often require segmentation which is challenging and computationally expensive. This paper proposes to estimate the volumes of both LV and right ventricle (RV) jointly(More)
Automating the detection and localization of segmental (regional) left ventricle (LV) abnormalities in magnetic resonance imaging (MRI) has recently sparked an impressive research effort, with promising performances and a breadth of techniques. However, despite such an effort, the problem is still acknowledged to be challenging, with much room for(More)
OBJECTIVES We developed a quantitative Dynamic Contrast-Enhanced CT (DCE-CT) technique for measuring Myocardial Perfusion Reserve (MPR) and Volume Reserve (MVR) and studied their relationship with coronary stenosis. METHODS Twenty-six patients with Coronary Artery Disease (CAD) were recruited. Degree of stenosis in each coronary artery was classified from(More)
We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks(More)
Accurate estimation of ventricular volumes plays an essential role in clinical diagnosis of cardiac diseases. Existing methods either rely on segmentation or are restricted to direct estimation of the left ventricle. In this paper, we propose a novel method for direct and joint volume estimation of bi-ventricles, i.e., the left and right ventricles, without(More)
The cardiac ejection fraction (EF) depends on the volume variation of the left ventricle (LV) cavity during a cardiac cycle, and is an essential measure in the diagnosis of cardiovascular diseases. It is often estimated via manual segmentation of several images in a cardiac sequence, which is prohibitively time consuming, or via automatic segmentation,(More)
BACKGROUND Transmural scar occupying left ventricular (LV) pacing regions has been associated with reduced response to cardiac resynchronization therapy (CRT). However, spatial influences of lead tip delivery relative to scar at both pacing sites remain poorly explored. This study evaluated scar distribution relative to LV and right ventricular (RV) lead(More)
Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior(More)