Learn More
In this paper, the problem of distributed beamforming is considered for a wireless network which consists of a transmitter, a receiver, and relay nodes. For such a network, assuming that the second-order statistics of the channel coefficients are available, we study two different beamforming design approaches. As the first approach, we design the beamformer(More)
—Driven by the ubiquitous deployment of mobile systems, the widespread use of the Internet, the rapid advances in wireless technologies, the insatiable demand for high-speed interactive multimedia services, and the growing need for secure wireless machine-to-machine communications, mobile commerce is rapidly approaching the business forefront. In this(More)
In this correspondence, we present a computationally simple semi-closed-form solution to the problem of designing distributed beamformer for two-way (bi-directional) multi-relay networks. In such a network, the relay nodes use amplify-and-forward relaying protocol to help two transceivers exchange information in a bidirectional manner. We consider a total(More)
In this correspondence, we study the problem of joint receive and transmit beamforming for a wireless network consisting of a transmitter, a receiver, and a relay node. The relay node is equipped with multiple antennas while the transmitter and the receiver each uses only one antenna. Our communication scheme consists of two phases: first the transmitter(More)
The problem of distributed beamforming is considered for a network which consists of a transmitter, a receiver, and r relay nodes. Assuming that the second order statistics of the channel coefficients are available, we design a distributed beamforming technique via maximization of the receiver signal-to-noise ratio (SNR) subject to individual relay power(More)
We consider a relay network which consists of two transceivers and r relay nodes. We study a half-duplex two-way relaying scheme. First, the two transceivers transmit their information symbols simultaneously and the relays receive a noisy mixture of the two transceiver signals. Then each relay adjusts the phase and the amplitude of its received signal by(More)