Learn More
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 ×(More)
Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and(More)
demonstrate that the risk of cardiovascular diseases and death rises in graded fashion with increasing blood pressure (Mosterd et al., 1999; Kannel, 2000). While hy-pertension was once thought to be " essential " for perfu-sion of tissues through sclerotic and narrowed blood and Molecular Biophysics and Biochemistry Yale University School of Medicine(More)
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip(More)
Malformations of the kidney and lower urinary tract are the most frequent cause of end-stage renal disease in children. Mutations in HNF1Β and PAX2 commonly cause syndromic urinary tract malformation. We searched for mutations in HNF1Β and PAX2 in North American children with renal aplasia and hypodysplasia (RHD) enrolled in the Chronic Kidney Disease in(More)
Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes--differentiated epithelial cells crucial for filtration--are thought to lack substantial capacity for regeneration. Here we show that podocytes rapidly(More)
Mutations in PRKCSH, encoding the beta-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum (ER), cause autosomal dominant polycystic liver disease. We found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease. These findings are suggestive of a role(More)
We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and(More)
Although high serum levels of galactose-deficient IgA1 (an important biomarker of IgA nephropathy (IgAN)) are found in most patients with IgAN, their relationship to disease severity and progression remains unclear. To help clarify this we prospectively enrolled 275 patients with IgAN and followed them for a median of 47 months (range 12-96 months). Serum(More)
BACKGROUND Familial aggregation of IgA nephropathy (IgAN) suggests that genetic factors contribute to the development of this trait. Because clinical manifestations in IgAN families are often limited to episodic haematuria, large kindreds tractable to linkage analysis have been difficult to identify. METHODS We identified a large Lebanese-Druze kindred(More)