Learn More
— LDPC convolutional codes have been shown to be capable of achieving the same capacity-approaching performance as LDPC block codes with iterative message-passing decoding. In this paper, asymptotic methods are used to calculate a lower bound on the free distance for several ensembles of asymptotically good protograph-based LDPC convolutional codes.(More)
—Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code(More)
— We propose a novel code design technique for irregular LDPC convolutional codes. The constructed codes can be encoded continuously in real time with the help of a shift-register based encoder. For moderate values of the syndrome former memory, simulation results show that the constructed codes outperform LDPC block codes with comparable hardware(More)
—We propose a low-cost serial decoder architecture for low-density parity-check convolutional codes (LDPC-CCs). It has been shown that LDPC-CCs can achieve comparable performance to LDPC block codes with constraint length much less than the block length. The proposed serial decoder architecture for LDPC-CCs uses a single decoding processor. Terminated data(More)
— In this paper asymptotic methods are used to form lower bounds on the free distance to constraint length ratio of several ensembles of regular, asymptotically good, protograph-based LDPC convolutional codes. In particular, we show that the free distance to constraint length ratio of the regular LDPC convolutional codes exceeds that of the minimum distance(More)
Message-passing iterative decoders for low-density parity-check (LDPC) block codes are known to be subject to decoding failures due to so-called pseudo-codewords. These failures can cause the large signal-to-noise ratio performance of message-passing iterative decoding to be worse than that predicted by the maximum-likelihood decoding union bound. In this(More)
—Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing(More)
— Low-density parity-check convolutional codes offer the same good error-correcting performance as low-density parity-check block codes while having the ability to encode and decode arbitrary lengths of data. This makes these codes well suited to certain applications, such as forward error control on packet switching networks. In this paper we propose a(More)
Molecular communication is a new field of communication where molecules are used to transfer information. Among the proposed methods, molecular communication via diffusion (MCvD) is particularly effective. One of the main challenges in MCvD is the intersymbol interference (ISI), which inhibits communication at high data rates. Furthermore, at the nano(More)