Alfried P Vogler

Learn More
Cataloging the very large number of undescribed species of insects could be greatly accelerated by automated DNA based approaches, but procedures for large-scale species discovery from sequence data are currently lacking. Here, we use mitochondrial DNA variation to delimit species in a poorly known beetle radiation in the genus Rivacindela from arid(More)
Phylogenetic trees in insects are frequently dated by applying a "standard" mitochondrial DNA (mtDNA) clock estimated at 2.3% My(-1), but despite its wide use reliable calibration points have been lacking. Here, we used a well-established biogeographic barrier, the mid-Aegean trench separating the western and eastern Aegean archipelago, to estimate(More)
Beetles represent almost one-fourth of all described species, and knowledge about their relationships and evolution adds to our understanding of biodiversity. We performed a comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900 species, representing more than 80% of the world's recognized beetle families. We defined(More)
High-throughput DNA sequencing has the potential to accelerate species discovery if it is able to recognize evolutionary entities from sequence data that are comparable to species. The general mixed Yule-coalescent (GMYC) model estimates the species boundary from DNA surveys by identifying independently evolving lineages as a transition from coalescent to(More)
The first comprehensive combined molecular and morphological phylogenetic analysis of the major groups of termites is presented. This was based on the analysis of three genes (cytochrome oxidase II, 12S and 28S) and worker characters for approximately 250 species of termites. Parsimony analysis of the aligned dataset showed that the monophyly of(More)
Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical(More)
The six extant aquatic families of Hydradephaga (Coleoptera) known so far represent a diverse group of beetles morphologically highly modified for life in the water. We report the discovery of a new genus with two species from South Africa and China, which differ greatly from all extant families, but resemble the Jurassic-Cretaceous dagger Liadytidae (the(More)
Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform.(More)
We studied the molecular phylogeny of the carabid subgenus Ohomopterus (genus Carabus), using two mitochondrial (mt) DNA regions (16SrRNA and NADH dehydrogenase subunit 5) and three nuclear DNA regions (wingless, phosphoenolpyruvate carboxykinase, and an anonymous locus). We revisited the previously reported incongruence between the distribution of mtDNA(More)
Species-level phylogenies derived from DNA sequence data provide a tool for estimating diversification rates and how these rates change over time, but to date there have been few empirical studies, particularly on insect groups. We use a densely sampled phylogenetic tree based on mitochondrial DNA to investigate diversification rates in the North American(More)