Alfredo Rodríguez-Tébar

Learn More
In the nervous system, both the shape and connectivity of neurons are strongly influenced by soluble, extracellular factors. Indeed, we recently demonstrated that after binding to p75(NTR), the common neurotrophin receptor, nerve growth factor (NGF) controls the morphology and connectivity of cultured mouse hippocampal neurons by encouraging the production(More)
BACKGROUND Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to(More)
Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3beta by NGF also favors microtubule polymerization and axon(More)
We have previously shown that dendrite morphology of cultured hippocampal neurones is controlled by Notch receptor activation or binding of nerve growth factor (NGF) to its low affinity receptor p75NTR, i.e. processes that up-regulate the expression of the Homologue of enhancer of split 1 and 5. Thus, the increased expression of these genes decreases the(More)
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs(More)
Notch and neurotrophins control neuronal shape, but it is not known whether their signaling pathways intersect. Here we report results from hippocampal neuronal cultures that are in support of this possibility. We found that low cell density or blockade of Notch signaling by a soluble Delta-Fc ligand decreased the mRNA levels of the nuclear targets of(More)
KEY WORDS: neurotrophins/ Enhancer-of-split/ dendrite morphology/ neuronal plasticity. NTR signaling and dendrites 2 2 ABSTRACT (199 words) Notch and neurotrophins control neuronal shape, but it is not known whether their signaling pathways intersect. Here we report results from hippocampal neuronal cultures which are in support of this possibility. We(More)
Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with(More)
APRIL (A Proliferation-Inducing Ligand, TNFSF13) is a member of the tumor necrosis factor superfamily that regulates lymphocyte survival and activation and has been implicated in tumorigenesis and autoimmune diseases. Here we report the expression and first known activity of APRIL in the nervous system. APRIL and one of its receptors, BCMA (B-Cell(More)
Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor(More)