Alfred von Loebbecke

Learn More
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or(More)
Prerecorded video footage of 9 female and 13 male Olympic level athletes swimming underwater by using the dolphin kick was analyzed and comparisons of the stroke kinematics were made with a previous analysis of cetacean swimming conducted by Rohr and Fish (Rohr, J. J., & Fish, F. E. (2004). Strouhal numbers and optimization of swimming by odontocete(More)
Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer's propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT(More)
A computational fluid dynamics (CFD) based analysis of the propulsive forces generated by two distinct styles of arm-pulls in front-crawl as well as backstroke is presented in this Technical Brief. Realistic models of the arm pulling through water are created by combining underwater video footage and laser-scans of an arm with computer animation. The(More)
  • 1