Alfred L Goldberg

Learn More
Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases,(More)
Reagents that inhibit the ubiquitin-proteasome proteolytic pathway in cells have not been available. Peptide aldehydes that inhibit major peptidase activities of the 20S and 26S proteasomes are shown to reduce the degradation of protein and ubiquitinated protein substrates by 26S particles. Unlike inhibitors of lysosomal proteolysis, these compounds inhibit(More)
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and(More)
Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific(More)
Autophagy allows cell survival during starvation through the bulk degradation of proteins and organelles by lysosomal enzymes. However, the mechanisms responsible for the induction and regulation of the autophagy program are poorly understood. Here we show that the FoxO3 transcription factor, which plays a critical role in muscle atrophy, is necessary and(More)
The proteasome is an essential component of the ATP-dependent proteolytic pathway in eukaryotic cells and is responsible for the degradation of most cellular proteins. The 20S (700-kDa) proteasome contains multiple peptidase activities that function through a new type of proteolytic mechanism involving a threonine active site. The 26S (2000-kDa) complex,(More)
Proteasomes are major sites for protein degradation in eukaryotic cells. The recent identification of selective proteasome inhibitors has allowed a definition of the roles of the ubiquitin-proteasome pathway in various cellular processes, such as antigen presentation and the degradation of regulatory or membrane proteins. This review describes the actions(More)
Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is(More)
Muscle atrophy occurs in many pathological states and results primarily from accelerated protein degradation and activation of the ubiquitin-proteasome pathway. However, the importance of lysosomes in muscle atrophy has received little attention. Activation of FoxO transcription factors is essential for the atrophy induced by denervation or fasting, and(More)
Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but(More)