#### Filter Results:

#### Publication Year

2001

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We report the observation of correlated photon pairs generated by spontaneous parametric downconversion of a 400-nm pump pulse in a quasi-phase-matched KTiOPO(4) nonlinear waveguide. The highest ratio of coincidence to single-photon count rates observed near 800 nm exceeds 18%. This suggests that nonlinear waveguides will be a promising source of correlated… (More)

We study distinguishing information in the context of quantum interference involving more than one parametric downconversion (PDC) source and in the context of polarization-entangled photon pairs based on PDC. We arrive at specific design criteria for two-photon sources so that when used as part of complex optical systems, such as photon-based quantum… (More)

We study distinguishing information in the context of photonic quantum interference tailored for practical implementations of quantum information processing schemes. In particular, we consider the character of single-photon states optimized for multiple-source interference experiments and for experiments relying on Bell-state measurement and arrive at… (More)

We present a source of near-infrared photon pairs based on the process of spontaneous parametric downconversion (SPDC), for which the joint signal-idler quantum state is designed to be factorable in the frequency-time and in the transverse position-momentum degrees of freedom. Our technique is based on the use of a broadband pump and vector group velocity… (More)

We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so… (More)

- ‹
- 1
- ›