Alfred B. U'Ren

Learn More
We report the observation of correlated photon pairs generated by spontaneous parametric downconversion of a 400-nm pump pulse in a quasi-phase-matched KTiOPO(4) nonlinear waveguide. The highest ratio of coincidence to single-photon count rates observed near 800 nm exceeds 18%. This suggests that nonlinear waveguides will be a promising source of correlated(More)
We study distinguishing information in the context of quantum interference involving more than one parametric downconversion (PDC) source and in the context of polarization-entangled photon pairs based on PDC. We arrive at specific design criteria for two-photon sources so that when used as part of complex optical systems, such as photon-based quantum(More)
We study distinguishing information in the context of photonic quantum interference tailored for practical implementations of quantum information processing schemes. In particular, we consider the character of single-photon states optimized for multiple-source interference experiments and for experiments relying on Bell-state measurement and arrive at(More)
We present a source of near-infrared photon pairs based on the process of spontaneous parametric downconversion (SPDC), for which the joint signal-idler quantum state is designed to be factorable in the frequency-time and in the transverse position-momentum degrees of freedom. Our technique is based on the use of a broadband pump and vector group velocity(More)
We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so(More)
  • 1