Learn More
The activation of MAPKs is controlled by the balance between MAPK kinase and MAPK phosphatase activities. The latter is mediated by a subset of phosphatases with dual specificity (VH-1 family). Here, we describe a new member of this family encoded by the puckered gene of Drosophila. Mutations in this gene lead to cytoskeletal defects that result in a(More)
BACKGROUND The adhesion of two epithelial sheets is a fundamental process that occurs throughout embryogenesis and during wound repair. Sealing of the dorsal epidermis along the midline of the Drosophila embryo provides a genetically tractable model to analyse the closure of such holes. Several studies indicate that the actin cytoskeleton plays a critical(More)
The patterning of the imaginal discs in Drosophila melanogaster is a progressive process that, like the patterning of the larval epidermis during embryogenesis, requires the activity of segment polarity genes. One segment polarity gene, wingless, encodes a homolog of the mouse proto-oncogene Wnt-1 and plays a prominent role in the patterning of the larval(More)
During the late cellular blastoderm stage of Drosophila embryo-genesis the segmentation genes engrailed, en, and wingless, wg, become expressed in two series of 14 stripes which will subsequently coincide with the anterior and posterior limits of each parasegment. Previous studies have shown that the establishment of the pattern of en stripes depends upon(More)
Fluctuations in the shape of amnioserosa (AS) cells during Drosophila dorsal closure (DC) provide an ideal system with which to understand contractile epithelia, both in terms of the cellular mechanisms and how tissue behaviour emerges from the activity of individual cells. Using quantitative image analysis we show that apical shape fluctuations are driven(More)
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative(More)
Both maternally supplied products and zygotically acting segmentation genes are required to establish the segment pattern of the Drosophila embryo. These genes are thought to act in part by regulating the expression of the homeotic genes. Products of the maternal and zygotic gap genes are present in the egg prior to blastoderm formation, when the homeotic(More)
One of the principal functions of any epithelium in the embryonic or adult organism is to act as a self-sealing barrier layer. From the earliest stages of development, embryonic epithelia are required to close naturally occurring holes and to fuse wherever two free edges are brought together, and at the simplest level that is precisely what the epidermis(More)
The expression of a subset of homologous genes of the AS-C is required during embryogenesis and metamorphosis for proper neural development. Here we study the expression of three of these genes (T3, T4, and T5) and show that their transcripts accumulate at the blastoderm stage in periodic patterns coincident with the dorsoventral extent of the(More)