Alfonso Capozzoli

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
There is an increasing need for automated fault detection tools in buildings. The total energy request in buildings can be significantly reduced by detecting abnormal consumption effectively. Numerous models are used to tackle this problem but either they are very complex and mostly applicable to components level, or they cannot be adopted for different(More)
In this paper a fault detection analysis through a neural networks ensembling approach and statistical pattern recognition techniques is presented. Abnormal consumption or faults are detected by analyzing the residual values, which are the difference between the expected and the real operating data. The residuals are more sensitive to faults and insensitive(More)
  • 1