Alfons J M Stams

Learn More
Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil(More)
Degradation of Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Influence of Methanogens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Obligately Syntrophic Amino Acid Deamination . . . . . . . 475 Syntrophic Arginine, Threonine, and Lysine Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(More)
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while(More)
An anaerobic, halorespiring bacterium (strain PCE-M2(T) = DSM 13726(T) = ATCC BAA-583(T)) able to reduce tetrachloroethene to cis-dichloroethene was isolated from an anaerobic soil polluted with chlorinated aliphatic compounds. The isolate is assigned to the genus Sulfurospirillum as a novel species, Sulfurospirillum halorespirans sp. nov. Furthermore, on(More)
A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMOT, was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 C with methanol as the sole substrate. The G+C content of the DNA of strain TMOT was 39.2 mol%. The optimum pH, NaCl concentration, and temperature for growth were 7.0, 1.0%, and 65(More)
Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization(More)
Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic(More)
Microbial population dynamics were investigated during start-up and during periods of overload conditions in anaerobic co-digesters treating municipal solid waste and sewage sludge. Changes in community structure were monitored using ribosomal RNA-based oligonucleotide probe hybridization to measure the abundance of syntrophic propionate-oxidizing bacteria(More)
Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe inhibitor when allowed to accumulate in the culture. Concentrations(More)
Syntrophic metabolism is diverse in two respects: phylogenetically with microorganisms capable of syntrophic metabolism found in the Deltaproteobacteria and in the low G+C gram-positive bacteria, and metabolically given the wide variety of compounds that can be syntrophically metabolized. The latter includes saturated fatty acids, unsaturated fatty acids,(More)