Learn More
The process of fracture healing involves the action and interaction of many cells, regulated by biochemical and mechanical signals. Vital to a successful healing process is the restoration of a good vascular network. In this paper, a continuous mathematical model is presented that describes the different fracture healing stages and their response to(More)
The combined use of experimental and mathematical models can lead to a better understanding of fracture healing. In this study, a mathematical model, which was originally established by Bailón-Plaza and van der Meulen (J Theor Biol 212:191–209, 2001), was applied to an experimental model of a semi-stabilized murine tibial fracture. The mathematical model(More)
The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type(More)
The mechanical properties of cortical bone are determined by a combination bone tissue composition, and structure at several hierarchical length scales. In this study the spatial distribution of tissue level properties within a human femoral shaft has been investigated. Cylindrically shaped samples (diameter: 4.4mm, N=56) were prepared from cortical regions(More)
Splitting methods are a frequently used approach for the solution of large stiff initial value problems of ordinary differential equations with an additively split right-hand side function. Such systems arise, for instance, as method of lines discretizations of evolutionary partial differential equations in many applications. We consider the choice of(More)
Bone fracture healing is a complex process in which angiogenesis or the development of a blood vessel network plays a crucial role. In this paper, a mathematical model is presented that simulates the biological aspects of fracture healing including the formation of individual blood vessels. The model consists of partial differential equations, several of(More)
At its highest level of microstructural organization-the mesoscale or millimeter scale-cortical bone exhibits a heterogeneous distribution of pores (Haversian canals, resorption cavities). Multi-scale mechanical models rely on the definition of a representative volume element (RVE). Analytical homogenization techniques are usually based on an idealized RVE(More)
Cancer invasion, recognised as one of the hallmarks of cancer, is a complex, multiscale phenomenon involving many inter-related genetic, biochemical, cellular and tissue processes at different spatial and temporal scales. Central to invasion is the ability of cancer cells to alter and degrade an extracellular matrix. Combined with abnormal excessive(More)
In this paper we consider the numerical solution of 2D systems of certain types of taxis-diiusion-reaction equations from mathematical biology. By spatial discretization these PDE systems are approximated by systems of positive, nonlinear ODEs (Method of Lines). The aim of this paper is to examine the numerical integration of these ODE systems for low to(More)