Alexis Desrichard

Learn More
We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking(More)
Immune checkpoint blockade has demonstrated substantial promise for the treatment of several advanced malignancies. These agents activate the immune system to attack tumor cells. For example, agents targeting CTLA4 and programmed cell death 1 (PD-1) have resulted in impressive response rates and, in some cases, durable remissions. Neoantigens are mutations(More)
As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes,(More)
PURPOSE Salivary duct carcinoma (SDC) is an aggressive salivary malignancy, which is resistant to chemotherapy and has high mortality rates. We investigated the molecular landscape of SDC, focusing on genetic alterations and gene expression profiles. EXPERIMENTAL DESIGN We performed whole-exome sequencing, RNA sequencing, and immunohistochemical analyses(More)
Recent advances in immune checkpoint blockade therapy have revolutionized the treatment of cancer. Tumor-specific antigens that are generated by somatic mutation, neoantigens, can influence patient response to immunotherapy and contribute to tumor shrinkage. Recent evidence demonstrating the success of checkpoint blockade immunotherapy in boosting T-cell(More)
Steadily high melanoma mortality rates urge for the availability of novel biomarkers with a more personalized ability to predict melanoma clinical outcomes. Germline risk variants are promising candidates for this purpose; however, their prognostic potential in melanoma has never been systematically tested. We examined the effect of 108 melanoma(More)
The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in cancer has remained challenging and incomplete. Here, we assess the relative impact and present a detailed landscape of arm-level SCNAs in 10,985 patient samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Furthermore, using chromosome 9p loss(More)
The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T(More)
Immune checkpoint blockade has shown significant promise as an anticancer treatment, yet the determinants of response are not completely understood. Here we show that somatic mutations in SERPINB3 and SERPINB4 are associated with survival after anti-CTLA4 immunotherapy in two independent cohorts of patients with melanoma (n = 174). Interestingly, serpins(More)
Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated(More)