Alexis A Denis

Learn More
In the search for new ketolides with improved activities against erythromycin-resistant S. pneumoniae and H. influenzae we synthesized a new 11,12 carbamate ketolide substituted by an imidazo-pyridyl side chain: HMR 3647. This compound demonstrated a potent activity against erythromycin susceptible and resistant pathogens, including penicillin(More)
In the search for new antibiotics active against macrolide-resistant pneumococci and Haemophilus influenzae, we synthesized a new class of 3-oxo-6-O-methylerythromycin derivatives, so-called "ketolides". A keto function was introduced in position 3 after removal of L-cladinose, a sugar which has long been thought essential. Further modifications of the(More)
Heptosyltransferases such as WaaC represent promising and attractive targets for the discovery of new Gram-negative antibacterial drugs based on antivirulence mechanisms. We report herein our approach to the identification of the first micromolar inhibitors of WaaC and the preliminary SAR generated from this family of(More)
Gram-negative bacteria lacking heptoses in their lipopolysaccharide (LPS) display attenuated virulence and increased sensitivity to human serum and to some antibiotics. Thus inhibition of bacterial heptose synthesis represents an attractive target for the development of new antibacterial agents. HldE is a bifunctional enzyme involved in the synthesis of(More)
We report here the optimization of an HldE kinase inhibitor to low nanomolar potency, which resulted in the identification of the first reported compounds active on selected E. coli strains. One of the most interesting candidates, compound 86, was shown to inhibit specifically bacterial LPS heptosylation on efflux pump deleted E. coli strains. This compound(More)
As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of(More)
A new class of MMP-12 inhibitors was discovered and optimized using structure-based drug design methods. Modeling studies using a known MMP-12 crystal structure identified a new interaction mode for these new MMP-12 inhibitors. Further optimization resulted in the discovery of a compound displaying nanomolar activity against MMP-12 and which was(More)
In this paper, we present some elements of our optimization program to decouple triclosan's specific FabI effect from its nonspecific cytotoxic component. The implementation of this strategy delivered highly specific, potent, and nonbiocidal new FabI inhibitors. We also disclose some preclinical data of one of their representatives, 83, a novel(More)
The effect of 2,3 modifications on the antibacterial activity of ketolides was evaluated by introducing substituents in position 2 and converting the C-1, C-2, C-3 beta-keto-ester into stable 2,3 enol-ether or 2,3 anhydro derivatives. Introduction of a fluorine in C-2 is beneficial with regard to the overall antibacterial spectrum whereas the enol-ether and(More)
A series of 9-oxime-11,12-carbamate ketolides was synthesized for the first time through a key 11,12-hydrazonocarbamate intermediate that was first oximated and further deaminated to give the corresponding carbamate. The N-N bond cleavage was achieved through an original new reaction using glycoaldehyde dimer as deaminating reagent. The new compounds(More)