Learn More
Lactacystin is a Streptomyces metabolite that inhibits cell cycle progression and induces differentiation in a murine neuroblastoma cell line. The cellular target of lactacystin is the 20 S proteasome, also known as the multicatalytic proteinase complex, an essential component of the ubiquitin-proteasome pathway for intracellular protein degradation. In(More)
As sessile organisms, plants must cope with multiple and combined variations of signals in their environment. However, very few reports have studied the genome-wide effects of systematic signal combinations on gene expression. Here, we evaluate a high level of signal integration, by modeling genome-wide expression patterns under a factorial combination of(More)
The natural product lactacystin exerts its cellular antiproliferative effects through a mechanism involving acylation and inhibition of the proteasome, a cytosolic proteinase complex that is an essential component of the ubiquitin-proteasome pathway for intracellular protein degradation. In vitro, lactacystin does not react with the proteasome; rather, it(More)
We have developed an assay to continuously monitor the branched amino acid preferring peptidase (BrAAP) activity of the proteasome. This assay is based on the hydrolysis of the fluorogenic peptide, Abz-Gly-Pro-Ala-Leu-Ala-Nba (Abz is 2-aminobenzoyl and Nba is 4-nitrobenzylamide) which is cleaved exclusively at the Leu-Ala bond by the 20S proteasome with a(More)
Systems biology requires mathematical tools not only to analyse large genomic datasets, but also to explore large experimental spaces in a systematic yet economical way. We demonstrate that two-factor combinatorial design (CD), shown to be useful in software testing, can be used to design a small set of experiments that would allow biologists to explore(More)
  • 1