Alexey Yu Ganin

Learn More
Porous materials find widespread application in storage, separation, and catalytic technologies. We report a crystalline porous solid with adaptable porosity, in which a simple dipeptide linker is arranged in a regular array by coordination to metal centers. Experiments reinforced by molecular dynamics simulations showed that low-energy torsions and(More)
C(60)-based solids are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2-4). Tc of face-centred-cubic (f.c.c.) A(3)C(60) (A=alkali metal) increases monotonically with inter C(60) separation, which is controlled by the A(+) cation size. As Cs(+) is the largest such ion, Cs(3)C(60) is a key material in this family.(More)
The body-centered cubic A15-structured cesium fulleride Cs3C60 is not superconducting at ambient pressure and is free from disorder, unlike the well-studied face-centered cubic A3C60 alkali metal fulleride superconductors. We found that in Cs3C60, where the molecular valences are precisely assigned, the superconducting state at 38 kelvin emerges directly(More)
The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative(More)
We investigate the normal state of the "11" iron-based superconductor FeSe0.42Te0.58 by angle-resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between approximately 3 and 16m{e} corresponding to a mass enhancement over band(More)
The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the(More)
The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and(More)
Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic(More)