Alexey Serov

Learn More
Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have(More)
For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC(More)
A highly active and durable non-platinum group metal (non-PGM) electrocatalyst was synthesized at high temperature from a catalyst precursor involving a ferrous iron salt and a nitrogen-containing charge-transfer salt as a precursor to form a nano-structured catalyst with performance level that makes it suitable for automotive applications. Such precursors(More)
Supercapacitive microbial fuel cells with various anode and cathode dimensions were investigated in order to determine the effect on cell capacitance and delivered power quality. The cathode size was shown to be the limiting component of the system in contrast to anode size. By doubling the cathode area, the peak power output was improved by roughly 120%(More)
  • 1