Learn More
We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and encoded quantum operations are associated with nontrivial homology cycles of the surface. We formulate protocols for error recovery, and study the efficacy of(More)
We consider a model of quantum computation in which the set of elementary operations is limited to Clifford unitaries, the creation of the state ͉0͘, and qubit measurement in the computational basis. In addition, we allow the creation of a one-qubit ancilla in a mixed state ␳, which should be regarded as a parameter of the model. Our goal is to determine(More)
We give a new proof for the area law for general 1D gapped systems, which exponentially improves Hastings' famous result [1]. Specifically, we show that for a chain of d-dimensional spins, governed by a 1D local Hamiltonian with a spectral gap > 0, the entanglement en-tropy of the ground state with respect to any cut in the chain is upper bounded by O(log 3(More)
A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z 2 gauge field. A phase diagram in the parameter space is obtained.(More)
We prove a new version of the quantum accuracy threshold theorem that applies to non-Markovian noise with algebraically decaying spatial correlations. We consider noise in a quantum computer arising from a perturbation that acts collectively on pairs of qubits and on the environment, and we show that an arbitrarily long quantum computation can be executed(More)