Learn More
We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet(More)
Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼ 3.6 ˚ A was reported which is not consistent with recent theoretical calculations. Here, using(More)
In many important chemical reactions metals are used as catalysts. As only the surface of these, often very expensive, catalysts is involved in the reaction, it is beneficial to maximize the surface-to-volume ratio by decomposing the metal in small nanoparticles. Mechanical means have proven inadequate, and therefore the development of methods for chemical(More)
Cathodic corrosion is a phenomenon in which negatively polarized metal electrodes are degraded by cathodic etching and nanoparticle formation. Though these changes are dramatic and sometimes even visible by eye, the exact mechanisms underlying cathodic corrosion are still unclear. This work aims to improve the understanding of cathodic corrosion by studying(More)
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes.(More)
The cathodic corrosion method described here is a simple, clean, and fast way of synthesizing nanoalloys with high catalytic performance. Using a series of Pt-Rh alloys as an example, we show that this one-step method can convert a bulk alloy electrode into an aqueous suspension of nanoparticles, retaining the composition and crystal lattice structure of(More)
  • 1