Alexei A. Podtelezhnikov

Learn More
Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional(More)
Type II DNA topoisomerases actively reduce the fractions of knotted and catenated circular DNA below thermodynamic equilibrium values. To explain this surprising finding, we designed a model in which topoisomerases introduce a sharp bend in DNA. Because the enzymes have a specific orientation relative to the bend, they act like Maxwell's demon, providing(More)
In this paper, we develop a segmental semi-Markov model (SSMM) for protein secondary structure prediction which incorporates multiple sequence alignment profiles with the purpose of improving the predictive performance. The segmental model is a generalization of the hidden Markov model where a hidden state generates segments of various length and secondary(More)
BACKGROUND CRANKITE is a suite of programs for simulating backbone conformations of polypeptides and proteins. The core of the suite is an efficient Metropolis Monte Carlo sampler of backbone conformations in continuous three-dimensional space in atomic details. METHODS In contrast to other programs relying on local Metropolis moves in the space of(More)
Elevated plasma homocysteine, a risk factor for Alzheimer's disease, could result from increased production from methionine or by inefficient clearance by folate- and B-vitamin-dependent pathways. Understanding the relative contributions of these processes to pathogenesis is important for therapeutic strategies designed to lower homocysteine. To assess(More)
Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However,(More)
Unfortunately, after publication of this article [1], it was noticed that the name of Matan Hofree was misspelled. The corrected name can be seen above and the original article has been updated to reflect this change. Network-driven plasma proteomics expose molecular changes in the Alzheimer's brain.
  • 1