#### Filter Results:

- Full text PDF available (16)

#### Publication Year

2001

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

In this paper we prove the principle of symmetric criticality for Motreanu–Panagiotopoulos type func-tionals, i.e., for convex, proper, lower semicontinuous functionals which are perturbed by a locally Lipschitz function. By means of this principle a variational–hemivariational inequality is studied on certain type of unbounded strips.

In this paper we study the multiplicity of solutions for a class of eigenvalue problems for hemivariational inequalities in strip-like domains. The first result is based on a recent abstract theorem of Marano and Motreanu, obtaining at least three distinct, axially symmetric solutions for certain eigenvalues. In the second result, a version of the fountain… (More)

- Alexandru Kristály, Waclaw Marzantowicz, Csaba Varga
- J. Global Optimization
- 2010

We extend a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications are given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole R N .

Given a linear isometry A 0 : R n → R n of finite order on R n , a general A 0-invariant closed subset M of R n is considered with Lipschitz boundary. Under suitable topological restrictions the existence of A 0-invariant geodesics of M is proven.

- Ágoston Róth, Imre Juhász, Alexandru Kristály
- ArXiv
- 2013

We construct a constrained trivariate extension of the univariate normalized B-basis of the vector space of trigonometric polynomials of arbitrary (finite) order n ∈ N defined on any compact interval [0, α], where α ∈ (0, π). Our triangular extension is a normalized linearly independent constrained trivariate trigonometric function system of dimension δ n =… (More)

We present some multiplicity results concerning parameterized Schrödinger type equations which involve nonlinearities with sublinear growth at infinity. Some stability properties of solutions with respect to the parameters are also established in an appropriate Sobolev space.

- Alexandru Kristály, Chong Li, Genaro López-Acedo, Adriana Nicolae
- J. Optimization Theory and Applications
- 2016

In this paper we trait hemivariational inequality systems. In certain case, this problem can be reduced to study a hemivariational inequality. Several applications are given as Browder and Hartmann-Stampacchia type results and Nash equilibrium point theorems.

- Csaba Farkas, Robert Fuller, Alexandru Kristály
- 2013 IEEE 8th International Symposium on Applied…
- 2013

This paper deals with a sublinear differential inclusion problem (P<sub>λ</sub>) depending on a parameter λ > 0 which is defined on a strip-like domain subject to the zero Dirichlet boundary condition. By variational methods, we prove that for large values of λ, problem (P<sub>λ</sub>) has at least two non-zero axially… (More)

- Csaba Farkas, Alexandru Kristály, Anikó Szakál
- 2016 IEEE 11th International Symposium on Applied…
- 2016

We prove Sobolev-type interpolation inequalities on Hadamard manifolds and their optimality whenever the Cartan-Hadamard conjecture holds (e.g., in dimensions 2, 3 and 4). The existence of extremals leads to unexpected rigidity phenomena.