Alexandre V Akoulitchev

Learn More
TFIIH is a general transcription and repair factor implicated in RNA polymerase II transcription, nucleotide excision repair, and transcription-coupled repair. Genetic defects in TFIIH lead to three distinct inheritable diseases: xeroderma pigmentosa, Cockayne syndrome, and trichothiodystrophy, with xeroderma pigmentosa patients being highly susceptible to(More)
Diverse classes of noncoding RNA, including small nuclear RNAs (snRNAs), play fundamental regulatory roles at many stages of gene expression. For example, recent studies have implicated 7SK RNA and components of the splicing apparatus in the regulation of transcriptional elongation. Here we present the first evidence of the involvement of an snRNA in the(More)
Uveal malignant melanoma (UM) is the most frequent primary intraocular tumour in adult humans. Because the survival rate of patients with UM has changed little in the past few decades, a better understanding of the molecular events governing UM development and the identification of markers indicating the potential for metastasis at the time of diagnosis are(More)
The influenza A virus RNA-dependent RNA polymerase is a heterotrimeric complex of polymerase basic protein 1 (PB1), PB2, and polymerase acidic protein (PA) subunits. It performs transcription and replication of the viral RNA genome in the nucleus of infected cells. We have identified a nuclear import factor, Ran binding protein 5 (RanBP5), also known as(More)
Microbial-lipopolysacharide (LPS), interleukin 4 (IL-4) and interferon gamma (IFN-γ) polarise macrophages into "innate", "alternative" and "classical", activation states by selective gene regulation. Expression of MARCO, CD200, CD200R1 (innate), MRC1 (alternative) and H2-Eb1 (classical) selectively marks these distinct activation states. Epigenetic events(More)
We describe a family segregating the retinoblastoma phenotype where the affected individuals have only unifocal tumours and where linkage analysis has identified unaffected mutant gene carriers. DNA from members of this 'low penetrance' pedigree was subjected to an exon-by-exon SSCP analysis of the RB1 gene. No mutations were found in the 27 exons of the(More)
Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the(More)
It is widely believed that translation occurs only in the cytoplasm of eukaryotes, but recent results suggest some takes place in nuclei, coupled to transcription. Support for this heterodoxy comes from studies of the nonsense-mediated decay (NMD) pathway; this pathway probably uses ribosomes to proofread messenger RNAs. We find components of the(More)
New evidence indicates that termination of transcription is an important regulatory step, closely related to transcriptional interference and even transcriptional initiation. However, how this occurs is poorly understood. Recently, in vivo analysis of transcriptional termination for the human beta-globin gene revealed a new phenomenon--co-transcriptional(More)
Coronavirus RNA synthesis is performed by a multienzymatic replicase complex together with cellular factors. This process requires the specific recognition of RNA cis-acting signals located at the ends of the viral genome. To identify cellular proteins involved in coronavirus RNA synthesis, transmissible gastroenteritis coronavirus (TGEV) genome ends,(More)