Learn More
BACKGROUND Supraspinatus deficiency is the most frequent and important problem associated to rotator cuff pathologies. It reduces shoulder stability and can lead to osteoarthritis. The goal of this study was to develop a numerical model of the shoulder to analyse the biomechanical consequences of this pathology. METHODS A 3D finite element model of the(More)
BACKGROUND Although shoulder arthroplasty is an accepted treatment for osteoarthritis, loosening of the glenoid component, which mainly occurs at the bone-cement interface, remains a major concern. Presently, the mechanical effect of the cement mantel thickness on the bone-cement interface is still unclear. METHODS Finite element analysis of a prosthetic(More)
The shoulder is one of the most complex joints of the human body, mainly because of its large range of motion, but also because of its active muscular stabilisation. Actually, the numerous stabilizing muscles and degrees of freedom yield indeterminate biomechanical models. To solve this indeterminate, most models use reverse dynamics with a simplified(More)
Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and(More)
A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed(More)
BACKGROUND Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a(More)
Current homogenized finite element (hFE) models of the patella lack a validated material law and mostly overlook trabecular anisotropy. The objective of this study was to identify the elastic constants of patellar trabecular bone. Using μCT scans of 20 fresh-frozen cadaveric patellae, we virtually extracted 200 trabecular cubes (5.3mm side length). Bone(More)
Osteoarthritis of the shoulder is frequently associated with posterior glenoid wear, which may be difficult to correct during shoulder arthroplasty. This study was designed to evaluate the risks that a prosthetic glenoid implanted in retroversion will loosen. The scapula, the humerus, the rotator cuff, and a total shoulder prosthesis were reconstructed with(More)
Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed(More)
Glenohumeral conformity has been reported to be one of the most critical implant-related features that may affect the occurrence of glenoid loosening. This study evaluated the mechanical effects of this parameter with a 3-dimensional finite element model of a prosthetic shoulder, which included the scapula, the humerus, and the rotator cuff muscles.(More)