Alexandre Magasinski

Learn More
Si-based Li-ion battery anodes have recently received great attention, as they offer specific capacity an order of magnitude beyond that of conventional graphite. The applications of this transformative technology require synthesis routes capable of producing safe and easy-to-handle anode particles with low volume changes and stable performance during(More)
The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with(More)
Vapor deposition techniques were utilized to synthesize very thick (∼1 mm) Li-ion battery anodes consisting of vertically aligned carbon nanotubes coated with silicon and carbon. The produced anode demonstrated ultrahigh thermal (>400 W·m(-1) ·K(-1)) and high electrical (>20 S·m(-1)) conductivities, high cycle stability, and high average capacity (>3000(More)
Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occurring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the(More)
Novel nanostructured sulfur (S)-carbide derived carbon (CDC) composites with ordered mesopores and high S content are successfully prepared for lithium sulfur batteries. The tunable pore-size distribution and high pore volume of CDC allow for an excellent electrochemical performance of the composites at high current densities. A higher electrolyte molarity(More)
Metal nanowires show promise in a broad range of applications, but many synthesis techniques require complex methodologies. We have developed a method for depositing patterned aluminum nanowires (Al NWs) onto Cu, Ni, and stainless steel substrates using low-pressure decomposition of trimethylamine alane complex. The NWs exhibited an average diameter in the(More)
Synthesis of S-doped activated carbons (ACs) by carbonization and simultaneous activation of S-based polymers was found to be an efficient route to produce porous carbons for double layer capacitors (EDLCs) with high specific energy and power densities combined with low self-discharge. Here we investigate for the first time the processing-structure-property(More)
We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density),(More)
Experimental studies showed the impact of the electrolyte solvents on both the ion transport and the specific capacitance of microporous carbons. However, the related structure-property relationships remain largely unclear and the reported results are inconsistent. The details of the interactions of the charged carbon pore walls with electrolyte ions and(More)
Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of(More)