Alexandre M. Roma

Learn More
We present a nonstiff, fully adaptive mesh refinement-based method for the Cahn-Hilliard equation. The method is based on a semi-implicit splitting, in which linear leading order terms are extracted and discretized implicitly, combined with a robust adaptive spatial discretization. The fully discretized equation is written as a system which is efficiently(More)
We present an efficient numerical methodology for the 3D computation of incom-pressible multi-phase flows described by conservative phase field models. We focus here on the case of density matched fluids with different viscosity (Model H). The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time(More)
The Immersed Boundary Method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit dis-cretizations. This excessive stability constraint can(More)
  • 1