Learn More
Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect(More)
The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the(More)
The frequency of visibly phage-infected bacterial cells (FVIB) and the average number of phages per cell [i.e. burst size (BS)] were determined in Antarctic and Arctic ultra-oligotrophic freshwater environments. Water samples were collected from two Antarctic freshwater lakes and cryoconite holes from a glacier in the Arctic. Data from this bipolar study(More)
Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in(More)
Uncertainty surrounds estimates of microbial cell and organic detritus fluxes from glacier surfaces. Here, we present the first enumeration of biological particles draining from a supraglacial catchment, on Midtre Lovénbreen (Svalbard) over 36 days. A stream cell flux of 1.08 × 10(7)  cells m(-2)  h(-1) was found, with strong inverse, non-linear(More)
There is an increasing body of evidence to show that viruses are important drivers of microbial evolution and that they can store a great deal of the Earth's microbial diversity in their genomes. Examination of microbial diversity in polar regions has revealed a higher than expected diversity of viruses, bacteria and eukaryotic microbes. Further, the few(More)
Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine(More)
Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared(More)
Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter(-1). In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey,(More)
Cyanobacteria are major primary producers in extreme cold ecosystems. Many lineages of cyanobacteria thrive in these harsh environments, but it is not fully understood how they survive in these conditions and whether they have evolved specific mechanisms of cold adaptation. Phormidesmis priestleyi is a cyanobacterium found throughout the cold biosphere(More)