Learn More
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It(More)
scikit-learn is an increasingly popular machine learning library. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant(More)
BACKGROUND Interpreting and controlling bioelectromagnetic phenomena require realistic physiological models and accurate numerical solvers. A semi-realistic model often used in practise is the piecewise constant conductivity model, for which only the interfaces have to be meshed. This simplified model makes it possible to use Boundary Element Methods.(More)
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute(More)
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software(More)
Functional neuroimaging can measure the brain's response to an external stimulus. It is used to perform brain mapping: identifying from these observations the brain regions involved. This problem can be cast into a linear supervised learning task where the neuroimag-ing data are used as predictors for the stimulus. Brain mapping is then seen as a support(More)
Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods(More)
Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine this information, we give a new hierarchical probabilistic model for brain activity patterns that does not require an experimental design to be specified. We estimate this model in the dictionary learning framework, learning simultaneously latent(More)
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or(More)
Although the spatial organization of visual areas can be revealed by functional Magnetic Resonance Imaging (fMRI), the synoptic, non-invasive access to the temporal characteristics of the information flow amongst distributed visual processes remains a technical and methodological challenge. Using frequency-encoded steady-state visual stimulation together(More)