Alexandre Gauguet

Learn More
By coupling a probe transition to a Rydberg state using electromagnetically induced transparency (EIT) we map the strong dipole-dipole interactions onto an optical field. We characterize the resulting cooperative optical nonlinearity as a function of probe strength and density. We demonstrate good quantitative agreement between the experiment and an N-atom(More)
We have developed an atom interferometer providing a full inertial base. This device uses two counterpropagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and(More)
We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave(More)
We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave-packets. The sensitivity function is calculated in the case of a three pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at BNM-SYRTE. We(More)
In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4 Planck's constant k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the(More)
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise(More)
We have developed external-cavity diode lasers, where the wavelength selection is assured by a low loss interference filter instead of the common diffraction grating. The filter allows a linear cavity design reducing the sensitivity of the wavelength and the external cavity feedback against misalignment. By separating the feedback and wavelength selection(More)
We report the first experimental test of the topological phase predicted by He and McKellar and by Wilkens in 1993: this phase, which appears when an electric dipole propagates in a magnetic field, is connected to the Aharonov-Casher effect by electric-magnetic duality. The He-McKellarWilkens phase is quite small, at most 27 mrad in our experiment, and this(More)
We present a magnetic trap for cold atoms near a surface of a millimeter-sized atom chip. The trap allows us to capture a large number of atoms with modest electrical currents (40 A) and to generate large magnetic gradients (>300 G cm-1). Here we report a mixture containing 6 × 109 atoms for the two rubidium isotopes 87Rb and 85Rb. This device does not(More)
We report an experimental test of the topological phase predicted by He and McKellar in 1993 and by Wilkens in 1994: this phase, which appears when an electric dipole propagates in a magnetic field, is connected to the Aharonov-Casher effect by electric-magnetic duality. The He-McKellar-Wilkens phase is quite small, at most 27 mrad in our experiment, and(More)