Alexandre G. de Brevern

Learn More
MOTIVATION The object of this study is to propose a new method to identify small compact units that compose protein three-dimensional structures. These fragments, called 'protein units (PU)', are a new level of description to well understand and analyze the organization of protein structures. The method only works from the contact probability matrix, i.e.(More)
A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (phi, psi) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to(More)
With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein(More)
MOTIVATION Our aim is to develop a process that automatically defines a repertory of contiguous 3D protein structure fragments and can be used in homology modeling. We present here improvements to the method we introduced previously: the 'hybrid protein model' (de Brevern and Hazout, THEOR: Chem. Acc., 106, 36-47, (2001)) The hybrid protein learns a(More)
Protein structures are necessary for understanding protein function at a molecular level. Dynamics and flexibility of protein structures are also key elements of protein function. So, we have proposed to look at protein flexibility using novel methods: (i) using a structural alphabet and (ii) combining classical X-ray B-factor data and molecular dynamics(More)
BACKGROUND Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric(More)
Loops connect regular secondary structures. In many instances, they are known to play crucial biological roles. To bypass the limitation of secondary structure description, we previously defined a structural alphabet composed of 16 structural prototypes, called Protein Blocks (PBs). It leads to an accurate description of every region of 3D protein backbones(More)
Alternative splicing (AS) is a major mechanism of increasing proteome diversity in complex organisms. Different AS transcript isoforms may be translated into peptide sequences of significantly different lengths and amino acid compositions. One important question, then, is how AS is constrained by protein structural requirements while peptide sequences may(More)
UNLABELLED We present an improved version of our Protein Peeling web server dedicated to the analysis of protein structure architecture through the identification of protein units produced by an iterative splitting algorithm. New features include identification of structural domains, detection of unstructured terminal elements and evaluation of the(More)