Alexandre Fifre

Learn More
A growing body of evidence supports the notion that soluble oligomeric forms of the amyloid beta-peptide (Abeta) may be the proximate effectors of neuronal injuries and death in the early stages of Alzheimer disease. However, the molecular mechanisms associated with neuronal apoptosis induced by soluble Abeta remain to be elucidated. We recently(More)
We recently demonstrated that a soluble oligomeric prion peptide, the putative 118-135 transmembrane domain of prion protein (PrP), exhibited membrane fusogenic properties and induced apoptotic cell death both in vitro and in vivo. A recently discovered rescue factor humanin (HN) was shown to protect neuronal cells from various insults involved in human(More)
A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential(More)
Although the genetic link between the epsilon 4 allele of apolipoprotein E (apoE) and Alzheimer's disease (AD) is well established, the apoE isoform-specific activity underlying this correlation remains unclear. We have recently characterized the interaction of the soluble the amyloid-beta peptide (A beta) with model membrane and demonstrated that(More)
  • 1