Alexandre Boulle

  • Citations Per Year
Learn More
In ferroelectric thin films, controlling the orientation of the polarization is a key element to controlling their physical properties. We use laboratory and synchrotron X-ray diffraction to investigate ferroelectric bicolor PbTiO3/PbZr0.2Ti0.8O3 and tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices and to study the role of the SrTiO3 layers on the domain(More)
Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within(More)
This work reports for the first time on the elaboration, by both chemical (sol-gel) and physical (Pulsed Laser Deposition) routes, of lead-free ferroelectric Na0.5Bi0.5TiO3 nanodots deposited on bare c-sapphire single crystal substrates presenting a 5° miscut angle along the [110] direction. Prior to any deposition, the sapphire substrates were treated at(More)
We computed by a Monte Carlo method the thermal relaxation of a polycrystalline thin film deposited on a Penrose lattice. The thin film was modelled by a 2 dimensional array of elementary domains, which have each a given height. During the Monte Carlo process, the height of each of these elementary domains is allowed to change as well as their(More)
A development is presented that allows the simulation of reciprocal-space maps (RSMs) of epitaxic thin films exhibiting fluctuations in the size and shape of the crystalline domains over which diffraction is coherent (crystallites). Three different crystallite shapes are studied, namely parallelepipeds, trigonal prisms and hexagonal prisms. For each shape,(More)
Ultradense macroscopic arrays of ferromagnetic alloy nanowires exhibit unique properties that make them attractive both for basic physics studies and for prospective nanodevice applications in various areas. We report here on the production of self-organized equiatomic FePt nanowires produced by glancing-angle ion-beam codeposition on alumina nanoripple(More)
  • 1