Alexandra S Whale

Learn More
One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the(More)
Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This(More)
Digital PCR (dPCR) offers absolute quantification through the limiting dilution of template nucleic acid molecules and has the potential to offer high reproducibility. However, the robustness of dPCR has yet to be evaluated using complex genomes to compare different dPCR methods and platforms. We used DNA templates from the pathogen Mycobacterium(More)
The latest incarnation of the PCR, digital PCR (dPCR), takes 2 decades of development in enzyme chemistry and assay design and applies them with formidable precision and sensitivity. dPCR is achieved by performing a limiting dilution of DNA into a succession of individual PCR reactions (or partitions). Limiting dilution, made practical by advances in(More)
Digital PCR (dPCR) has been reported to be more precise and sensitive than real-time quantitative PCR (qPCR) in a variety of models and applications. However, in the majority of commercially available dPCR platforms, the dynamic range is dependent on the number of partitions analysed and so is typically limited to four orders of magnitude; reduced compared(More)
MicroRNAs (miRNAs) are short (~22 nucleotides), non-coding RNA molecules that post-transcriptionally regulate gene expression. As the miRNA field is still in its relative infancy, there is currently a lack of consensus regarding optimal methodologies for miRNA quantification, data analysis and data standardization. To investigate miRNA measurement we(More)
Circulating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality(More)
Over the past decade numerous publications have demonstrated how digital PCR (dPCR) enables precise and sensitive quantification of nucleic acids in a wide range of applications in both healthcare and environmental analysis. This has occurred in parallel with the advances in partitioning fluidics that enable a reaction to be subdivided into an increasing(More)
Digital PCR (dPCR) is being increasingly used for the quantification of sequence variations, including single nucleotide polymorphisms (SNPs), due to its high accuracy and precision in comparison with techniques such as quantitative PCR (qPCR) and melt curve analysis. To develop and evaluate dPCR for SNP detection using DNA, RNA, and clinical samples, an(More)
Sample quality is of major importance when conducting molecular analysis of nucleic acids, and factors such as degradation, presence of impurities, and enzymatic inhibitors may have a significant impact on the quality of data. Issues of quality assessment become more important as the increased use of biobanking means that whole blood samples are being(More)