Alexandra H. Brozena

Learn More
Double-walled carbon nanotubes are coaxial nanostructures composed of exactly two single-walled carbon nanotubes, one nested in another. This unique structure offers advantages and opportunities for extending our knowledge and application of the carbon nanomaterials family. This review seeks to comprehensively discuss the synthesis, purification and(More)
The outer walls of double-walled carbon nanotubes (DWNTs) were selectively oxidized using a combination of oleum and nitric acid. Intercalation of oleum between bundled DWNTs enabled a homogeneous reaction by equally exposing all outer wall surfaces to the oxidants. At optimized reaction conditions, this double-wall chemistry enabled high water solubility(More)
Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that(More)
Covalent chemistry typically occurs randomly on the graphene lattice of a carbon nanotube because electrons are delocalized over thousands of atomic sites, and rapidly destroys the electrical and optical properties of the nanotube. Here we show that the Billups-Birch reductive alkylation, a variant of the nearly century-old Birch reduction, occurs on(More)
Semiconducting single-walled carbon nanotubes (SWCNTs) are direct band gap materials in which exciton photoluminescence (PL) occurs at the same wavelength as excitation. Here, we show that propagative sidewall alkylation can induce a new PL peak in (6,5) SWCNTs red-shifted from the E11 near-infrared exciton excitation and emission by ∼140 meV. The magnitude(More)
We demonstrate diameter-dependent, progressive alkylcarboxylation of single-walled carbon nanotubes by recycling a modified Billups-Birch reaction. The strong diameter dependence was confirmed by Raman spectroscopy. Alkylcarboxylation made SWNTs soluble in water, allowing the more readily functionalized, smaller diameter nanotubes to be enriched by water(More)
We demonstrate efficient creation of defect-bound trions through chemical doping of controlled sp(3) defect sites in semiconducting, single-walled carbon nanotubes. These tricarrier quasi-particles luminesce almost as brightly as their parent excitons, indicating a remarkably efficient conversion of excitons into trions. Substantial populations of trions(More)
Title of Document: CHEMICAL FUNCTIONALIZATION OF CARBON NANOTUBES FOR CONTROLLED OPTICAL, ELECTRICAL AND DISPERSION PROPERTIES Alexandra Brozena, Doctor of Philosophy, 2013 Directed By: Professor YuHuang Wang, Department of Chemistry and Biochemistry A carbon nanotube is a graphitic sheet, rolled into a one-dimensional, hollow tube. This structure provides(More)
  • 1