Alexandra D. Twyman

Learn More
We used a reference memory paradigm to examine whether 4- and 5-year-old children could be trained to use landmark features to relocate targets after disorientation. In Experiment 1, half of the children were pretrained in a small equilateral triangle-shaped room. Each of the three walls was a different color, and the target was always in the middle of the(More)
Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association (Lee, Shusterman &(More)
It is frequently claimed that the human mind is organized in a modular fashion, a hypothesis linked historically, though not inevitably, to the claim that many aspects of the human mind are innately specified. A specific instance of this line of thought is the proposal of an innately specified geometric module for human reorientation. From a massive(More)
The geometry formed by the walls of a room is known to be a potent cue in reorientation, yet little is known about the use of geometric information gleaned from other contexts. We used functional magnetic resonance imaging to examine neural activity in adults while reorienting in 3 different environments: the typical rectangular walled room, a rectangular(More)
There is ongoing debate in spatial cognition about the mechanisms by which organisms are able to reorient, or reestablish a position, in the world after losing their bearing. The traditional view is that there is an encapsulated reorientation module that can only process environmental geometry such as distances or angles (Cheng, 1986). Recently, this view(More)
After becoming disoriented, organisms must re-establish their position in space. The core knowledge position argues that reorientation relies only on extended 3D surfaces, and that this sensitivity operates automatically and is innately present. In contrast, the adaptive combination perspective argues that reorientation is experience-expectant and(More)
Occasionally, we lose track of our position in the world, and must re-establish where we are located in order to function. This process has been termed the ability to reorient and was first studied by Ken Cheng in 1986. Reorientation research has revealed some powerful cross-species commonalities. It has also engaged the question of human uniqueness because(More)
  • 1