Alexandra D Nikitashina

Learn More
Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh(More)
Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA)(More)
BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb(More)
82 Today, the inhibitors of acetylcholinesterase (AChE) are widely used in medicine for pharmacologg ical correction of synaptic failure underlying Alzhee imer's disease, myasthenia gravis, and other forms of pathological muscular weakness, and for stimulation of smooth muscles of the intestine and bladder in order to increase the tone and stimulate(More)
Reactions of pyrimidinophanes with two 6-methylthiocytosine and one 5(6)-alkyluracil moieties bridged with each other by polymethylene spacers with methyl or nonyl p-toluenesulfonate, p-toluenesulfonic acid, methanesulfonate and trifluorosulfonate afforded amphiphilic macrocyclic bis-p-toluene-, methane- and trifluorosulfonates. Despite the presence of(More)
  • 1