Alexandra Belayew

Learn More
Facioscapulohumeral muscular dystrophy (FSHD) is linked to the polymorphic D4Z4 locus on chromosome 4q35. In non-affected individuals, this locus comprises 10-100 tandem copies of members of the 3.3kb dispersed repeat family. Deletions leaving 1-8 such repeats have been associated with FSHD, for which no candidate gene has been identified. We have(More)
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, paired-like homeodomain transcription factor 1(More)
Facioscapulohumeral muscular dystrophy (FSHD) patients carry contractions of the D4Z4-tandem repeat array on chromosome 4q35. Decrease in D4Z4 copy number is thought to alter a chromatin structure and activate expression of neighboring genes. D4Z4 contains a putative double-homeobox gene called DUX4. We identified DUX4 mRNAs in cells transfected with(More)
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed(More)
Facioscapulohumeral muscular dystrophy (FSHD) is caused by an unusual deletion with neomorphic activity. This deletion derepresses genes in cis; however which candidate gene causes the FSHD phenotype, and through what mechanism, is unknown. We describe a novel genetic tool, inducible cassette exchange, enabling rapid generation of isogenetically modified(More)
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disease. It maps to the D4Z4 repeat array at 4q35, and correlates with a repeat contraction which derepresses transcription of local genes. Which, if any, of these genes is pathogenic to muscle, and through what molecular mechanism is unknown. The present study investigates(More)
The levels of alpha-fetoprotein mRNA in mice are determined by at least two trans-acting, unlinked genes, raf and Rif. raf determines the basal levels of alpha-fetoprotein mRNA in adult mice, while Rif determines its degree of inducibility during liver regeneration. To determine whether these regulatory loci affect other structural genes, we screened a(More)
The human genome contains hundreds of repeats of the 3.3 kb family in regions associated with heterochromatin. We have previously isolated a 3.3 kb-like cDNA encoding a double homeodomain protein (DUX1). Demonstration that the protein was expressed in human rhabdomyosarcoma TE671 cells, and characterization of a homologous promoter suggested that functional(More)
Target genes for the helicase-like transcription factor (HLTF), a member of the SNF/SWI family, were immunoprecipitated from HeLa chromatin fragments with an anti-HLTF antibody. A 182 bp fragment ( HEFT1 ) presented 87% sequence identity with 3.3 kb dispersed repeats from the 4q35 D4Z4 locus linked to facioscapulohumeral muscular dystrophy (FSHD). The HEFT1(More)
A 5.4-kb cDNA encoding the protein that binds to the B Box of the plasminogen activator inhibitor-1 (PAI-1) gene was isolated and sequenced. The protein, named helicase-like transcription factor (HLTF), contains a DNA-binding domain, a RING finger domain, and seven helicase domains and is homologous to SWI/SNF proteins. Two HLTF mRNAs of 5.5 and 4.5 kb were(More)