Learn More
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the(More)
The cardinal motor symptoms of Parkinson's disease (PD) are caused by the vulnerability to dysfunction and degeneration of ventral midbrain (VM) dopaminergic (DA) neurons. A major limitation for experimental studies of current ES/iPS cell differentiation protocols is the lack of VM DA neurons with a stable phenotype as defined by an expression marker code(More)
Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We(More)
Identification and use of cell surface cluster of differentiation (CD) biomarkers have enabled much scientific and clinical progress. We identify a CD surface antigen code for the neural lineage based on combinatorial flow cytometric analysis of three distinct populations derived from human embryonic stem cells: (1) CD15(+)/CD29(HI)/CD24(LO) surface antigen(More)
Fibroblast growth factor 8 (FGF8) mediates the function of the midbrain-hindbrain organizer (MHO). FGF signals are transmitted by means of four known FGF receptors (FGFRs). Studies of Fgfr expression in early vertebrate development have shown that Fgfr1 is expressed along the entire neural tube, whereas Fgfr2 and Fgfr3 expression has been shown to spare the(More)
The mid-/hindbrain organizer (MHO) is characterized by the expression of a network of genes, which controls the patterning and development of the prospective midbrain and anterior hindbrain. One key molecule acting at the MHO is the fibroblast growth factor (Fgf) 8. Ectopic expression of Fgf8 induces genes that are normally expressed at the mid-/hindbrain(More)
GABAergic neurons are the primary inhibitory cell type in the mature brain and their dysfunction is associated with important neurological conditions like schizophrenia and anxiety. We aimed to discover the underlying mechanisms for dorsal/ventral midbrain GABAergic neurogenesis. Previous work by us and others has provided crucial insights into the key(More)
  • 1