Alexandr Yakovlev

Learn More
As part of our attempts at understanding fundamental principles that underlie the generation of nondividing terminally differentiated progeny from dividing precursor cells, we have developed approaches to a quantitative analysis of proliferation and differentiation of oligodendrocyte type 2 astrocyte (O-2A) progenitor cells at the clonal level. Owing to(More)
According to our previous model, oligodendrocyte--type 2 (O-2A) astrocyte progenitor cells become competent for differentiation in vitro after they complete a certain number of critical mitotic cycles. After attaining the competency to differentiate, progenitor cells divide with fixed probability p in subsequent cycles. The number of critical cycles is(More)
The timing of cell differentiation can be controlled both by cellintrinsic mechanisms and by cell-extrinsic signals. Oligodendrocyte type-2 astrocyte progenitor cells are known to be the precursor cells that give rise to oligodendrocytes. When stimulated to divide by purified cortical astrocytes or by platelet-derived growth factor, these progenitor cells(More)
Our previous research effort has resulted in a stochastic model that provides an excellent fit to our experimental data on proliferation and differentiation of oligodendrocyte type-2 astrocyte progenitor cells at the clonal level. However, methods for estimation of model parameters and their statistical properties still remain far away from complete(More)
The results of our previous analyses suggest that O-2A progenitor cells become competent for differentiation in vitro after they complete a certain number of critical mitotic cycles. The number of critical cycles varies from clone to clone and should be thought of as a random variable. We propose an approach to the analysis of oligodendrocyte generation in(More)
A branching stochastic process proposed earlier to model oligodendrocyte generation by O-2A progenitor cells under in vitro conditions does not allow invoking the maximum likelihood techniques for estimation purposes. To overcome this difficulty, we propose a partial likelihood function based on an embedded random walk model of clonal growth and(More)
The mechanism of septic induction of antimicrobial peptide synthesis in insects is well reported in current papers. On the contrary, there is little data on aseptic, particularly hormonal, regulation of immune defense. Insect neuroendocrinology traditionally considers hormones as regulators of development and reproduction, focusing less attention on their(More)
  • 1