Alexandr Muterko

Learn More
Vernalization requirement in hexaploid wheat is largely controlled by a series of homoeologous VERNALIZATION (Vrn) genes, Vrn-A1, Vrn-B1, and Vrn-D1. The sequence of the promoter area and first intron of Vrn-D1 were analysed in 77 hexaploid accessions, representing five wheat species (Triticum compactum, Triticum sphaerococcum, Triticum spelta, Triticum(More)
The vernalization requirement determines the need of plants in a prolonged period of cold treatment for transition from a vegetative to a reproductive phase. The vernalization response in wheat is controlled by the alleles of Vrn genes. A molecular structure and causes that are the basis of alternative alleles have been defined for almost all Vrn genes.(More)
Photoperiod response in wheat is determined to a large extent by the homoeologous series of Photoperiod 1 (Ppd1) genes. In this study, Ppd-A1 genomic sequences from the 5′ UTR and promoter region were analysed in 104 accessions of six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and 102(More)
In wheat, the vernalization requirement is mainly controlled by the VRN genes. Different species of hexaploid and tetraploid wheat are widely used as genetic source for new mutant variants and alleles for fundamental investigations and practical breeding programs. In this study, VRN-A1 and VRN-B1 were analysed for 178 accessions representing six tetraploid(More)
The durum wheat varieties from Ukraine, Russia, and Kazakhstan are characterized by the specific allelic composition of the VRN genes that sharply distinguish them from the Triticum durum varieties from other countries. For numerous varieties, the VRN alleles which previously were not found in tetraploid wheat were identified. The ability of wheat to adapt(More)
  • 1