Alexandr Dejneka

Learn More
The transplantation of mesenchymal stem cells (MSC) is currently under study as a therapeutic approach for spinal cord injury, and the number of transplanted cells that reach the lesioned tissue is one of the critical parameters. In this study, intrathecally transplanted cells labeled with superparamagnetic iron oxide nanoparticles were guided by a magnetic(More)
Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to(More)
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully(More)
Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal(More)
In perovskite-structure epitaxial films, it has been theoretically predicted that the polarization and the coherence of polar order can increase with increasing crystallographic strain. Experimental evidence of strain-induced long-range ferroelectric order has not been obtained thus far, posing the fundamental question of whether or not strain can induce(More)
The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia(More)
Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction(More)
Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial(More)
Ultrathin (12-15 nm) SrTiO(3) films are grown by pulsed laser deposition on various single-crystal substrates. The crystal structure, orientation, and strain state of the films are studied by x-ray diffraction. The room-temperature optical properties of the films are experimentally determined using ellipsometric spectroscopy in the 1-6 eV spectral range.(More)
The possibilities of in situ spectroscopic ellipsometry applied to phase transitions investigation in oxide thin films and crystals are examined in this work, along with the use of various parameters calculated from ellipsometric data (band gap energy Eg, refractive index n and surface roughness) together with the directly measured main ellipsometric angles(More)