Learn More
Numerous transcriptional regulators of neurogenesis have been identified in the developing and adult brain, but how neurogenic fate is programmed at the epigenetic level remains poorly defined. Here, we report that the transcription factor Pax6 directly interacts with the Brg1-containing BAF complex in adult neural progenitors. Deletion of either Brg1 or(More)
Although the local environment is known to regulate neural stem cell (NSC) maintenance in the central nervous system, little is known about the molecular identity of the signals involved. Chondroitin sulfate proteoglycans (CSPGs) are enriched in the growth environment of NSCs both during development and in the adult NSC niche. In order to gather insight(More)
Neural stem cells have been documented in both the developing and the mature adult CNSs of mammals. This cell population holds a considerable promise for therapeutical applications in a wide array of CNS diseases. Therefore, universally applicable strategies for the purification of this population to further its cell biological characterization are sought.(More)
The neural stem cell niche of the embryonic and adult forebrain is rich in chondroitin sulfate glycosaminoglycans (CS-GAGs) that represent complex linear carbohydrate structures on the cell surface of neural stem/progenitor cells or in their intimate environment. We reported earlier that the removal of CS-GAGs with the bacterial enzyme chondroitinase ABC(More)
Tenascin C (Tnc) is an alternatively spliced, multimodular extracellular matrix glycoprotein present in the ventricular zone of the developing brain. Pax6-deficient small eye (sey) mouse mutants show an altered Tnc expression pattern. Here, we investigated the expression of Tnc isoforms in neural stem/progenitor cells and their regulation by the paired-box(More)
Neural stem cells (NSCs) reside in a niche that abounds in extracellular matrix (ECM) molecules. The ECM glycoprotein tenascin-C (Tnc) that occurs in more than 25 isoforms represents a major constituent of the privileged NSC milieu. To understand its role for NSCs, the induction gene trap technology was successfully applied to mouse embryonic NSCs, and a(More)
CNS lesions stimulate adult neurogenic niches. Endogenous neural stem/progenitor cells represent a potential resource for CNS regeneration. Here, we investigate the response to unilateral focal laser-lesions applied to the visual cortex of juvenile rats. Within 3 days post-lesion, an ipsilateral increase of actively cycling cells was observed in cortical(More)
Membrane formation and the initiation of myelin gene expression are hallmarks of the differentiation of oligodendrocytes from their precursors. Here, we compared the roles of the two related extracellular matrix (ECM) glycoproteins Tenascin C (Tnc) and Tenascin R (Tnr) in oligodendrocyte differentiation. Oligodendrocyte precursors from Tnr-deficient mice(More)
The stem cell niche provides the specialized environment that is able to sustain the lifelong maintenance of stem cells in their discrete locations within organs. The niche is usually composed of several different cell types and a specialized extracellular matrix consisting of many different constituents. Additionally, a variety of growth factors are(More)
Here we describe the expression pattern of a previously unknown mouse gene mPet-1. The isolated cDNA codes for an ETS-domain transcription factor of 237 amino acids in length, which is localized to the nucleus. mPet-1 is a member of the winged helix transcription factor gene family like its rat homologue Pet-1 and the human homologue FEV. The start ATG of(More)