Alexander Y. Tsygankov

Learn More
Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential(More)
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting(More)
Downregulation of protein tyrosine kinases is a major function of the multidomain protein c-Cbl. This effect of c-Cbl is critical for both negative regulation of normal physiological stimuli and suppression of cellular transformation. In spite of the apparent importance of these effects of c-Cbl, their own regulation is poorly understood. To search for(More)
Subgroup C strains of Herpesvirus saimiri, a leukemogenic virus of non-human primates, transform human T cells to permanent growth in culture. These cell retain their antigen specificity, and they are becoming widely used as a model for activated human T cells. Though a variety of human cell types can be infected by H. saimiri, transformation appears to be(More)
HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in(More)
The cellular signaling machinery is a complex network of cross-talking proteins that enables dynamic communication between upstream causal factors and downstream effectors. Non-receptor tyrosine kinases, including Src, are the intermediates of signal transfer, controlling pathways as diverse as cell growth, death, differentiation, migration, and genome(More)
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5(More)
Proteins of the UBASH3/STS/TULA family recently emerged as potent regulators of cellular functions. They are characterized by a unique architecture, featuring at least three functional domains. One of them is a histidine phosphatase domain, which mediates the protein tyrosine phosphatase activity of these proteins. Recent studies demonstrated that(More)
The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In(More)
Activation of T cells by specific antigens in the context of major histocompatibility complex encoded proteins is mediated by the T cell antigen receptor (TcR), consisting of a variable (Ti) and an invariant (CD3) subunits. Tyrosine phosphorylation is considered to be one of the earliest steps in TcR-mediated signal transduction. There are indications that(More)